Table of Contents
Quality Testing of Sand at The Construction Site for The Concrete
There are different methods for testing the quality of sand at the construction site for concrete construction. The quality of the sand is as important as other materials for concrete.
The most different, which passes through the 4.75 mm IS strainer, is known as the fine aggregate. The fine aggregate will typically consist of natural sand, crushed stone sand, crushed gravel sand stone dust or arable powder, fly ash, and broken brick (burnt clay).
It will be hard, durable, chemically inert, clean and free from sedimentary coatings, organic materials, etc. and will not contain any appreciable amount of clay shells or pellets and harmful impurities.
To cause corrosion of iron pyrites, alkalis, salts, coal, asbestos, shale, or similar laminated or similar amounts of metal or to adversely affect the strength, durability, or presence of mortar, plaster or concrete.
The sum of the percentage of all harmful material shall not exceed 5%. Fine aggregates should be checked for biological impurities such as decayed vegetative humps, coal dust, etc.
Quality Test of Sand at a Construction Site
Following are the sand tests at the construction site:
1. Testing of Organic Impurities
This test is done in the field for every 20 co or part thereof.
2. Silt Material Testing–
This is also a field test and is to be conducted for every 20 co.
3. Particle Size Distribution–
This test can be conducted on-site or in the laboratory for every 40 co sand.
4. Sandpile–
This test is conducted on-site for every 20 sand. Based on the bulking of the sand, the water-cement ratio suitable for concrete on site is calculated.
Types of Sand Test
1. Testing for Sand Silt Content Test
The maximum amount of silt in the sand shall not exceed 8%. Fine aggregates containing more than an acceptable percentage of silt will be washed so as to bring the silt content within an acceptable range.
2. Testing for Grading of Sand
On the basis of particle size, fine aggregates are classified into four regions. Where the grading is outside the range of a particular grading zone, the other strainer is over 600 microns.
If the total amount does not exceed 5 percent, it will be considered to fall within that grading zone.
3. Testing for Harmful Materials in the Sand
Such as seaweed or in such sufficient quantities as to adversely harden. To be positively affected. Specific strength or excellent durability of mortar.
The maximum amount of soil, fine silt, fine dust, and organic impurities in sand/marble dust shall not exceed the following limits:
(A) Clay, fine silt and fine dust when in IS 2386 (Part-II), natural sand or crushed gravel sand and crushed stone sand does not exceed 5% by mass.
(B) Organic impurities, when determined in the color of the liquid, will be the lighter according to IS 2386 than specified in the social code.
4. Testing for Sand Bulging
Dry aggregates, when dry or saturated, contain approximately the same amount but increase in income due to moisture. If the fine aggregate is moist in proportion to the ingredients of the mortar or concrete, its volume shall be suitably increased to allow in bulk.
Effect of Silt Penalty on the Durability Properties of Concrete
Silt fines are 75 smaller (number 200) particles smaller than the sieve. Typically, they are either silted or silted from clay and are difficult to remove from the overall surface.
Considering the high proportion of silt fines found in Taiwanese river sands, this research investigates the effect of the material on the properties of concrete.
In this study, solid samples with a w / c ratio of 0.48 and varying silt content ranging from 0% to 9% were separated and tested. In addition, chloride transport tests were performed to check the properties of concrete.
The test results indicate a decrease in durability when the ratio of silt content to fine aggregate is more than 5%.
The compressive strength, however, increases only 1 MPa when the silt volume is less than 5%. But it decreases from 3 MPa to 5 MPa when silt content increases from 7% to 9%.
These results can serve as a reference in concrete production, as well as quality control of fine aggregate with large quantities of silt fines.
Also Read: What Is Linear Measurement Surveying | Types of Linear Measurement Surveying
Tests on Fine Aggregate
Dry aggregates, when dry or saturated, contain approximately the same amount but increase in income due to moisture.
If the fine aggregate is moist in proportion to the ingredients of the mortar or concrete, its volume shall be suitably increased to allow in bulk.
At this time, there is no national specification regarding the use of desert sand with very fine grains.
Civil engineering has tested concrete made of Tengeli desert sand and masu sandy sand, to be able to apply desert sand to mortar and concrete and to clarify its engineering characteristics.
Typically based on the determined chemical composition and physical characteristics of desert sand, the mechanical properties of mortar, and modern concrete instantly made from two specific types of desert, sand was promptly investigated.
The results of the tests indicated that desert sand could be used as a good aggregate in mortar and concrete for general civil engineering.
Testing of Sand for Concrete
Take a some amount of sand in to your hand and drop it in to the glass which contain water. After drooping the sand than shake the glass. If clay is present in the sand it will make a separate layer above the water surface. So it indicate sand is not good.
How to Check Quality of Sand on Site?
Take a Sample of sand and add it in Sodium Hydroxide [NaOH] Solution, Stir the solution for few minutes, if the color of solution changes to brown, then the sand has organic impurities which are not suitable for construction. Good quality of sand shows lighter color when it is mixed with NaOH solution.
Sand Test
The sand equivalent test quantifies the relative abundance of sand versus clay in soil. It is measured by standardized test methods such as ASTM D2419, AASHTO T176, and EN 933-8. The test is used to qualify aggregates for applications where sand is desirable but fines and dust are not.
Types of Sand Test
The following are the various types of sand control tests:
- Moisture content test.
- Clay content test.
- Grain fitness test.
- Air Permeability test.
- Strength test.
- Refractoriness test.
- Mould hardness test (Brinell Hardness, Rockwell)
Tests on Fine Aggregate
The fine aggregate specific gravity test is used to calculate the specific gravity of a fine aggregate sample by determining the ratio of the weight of a given volume of aggregate to the weight of an equal volume of water. It is similar in nature to the coarse aggregate specific gravity test.
Sand Patch Test
The sand patch test is a field test that uses a volumetric approach to determine the average macrotexture depth of a pavement surface. A known volume of sand is spread evenly over the pavement surface to form a circle. The diameter of the circle is measured on four axes and the values are averaged
Organic Impurities Test for Sand
A simple test for determining the presence of injurious organic matter in sands is made by shaking some of the sand in a plain glass bottle with an equal volume of a 3 % solution of caustic soda (100 gm of caustic soda in 4 liters of water), and allowing the mixture to stand for 24 hours.
Types of Sand Used in Construction
Concrete sand, pit sand, natural or river sand, manufactured sand (M-sand), utility sand, and fill sand are the most common forms of sand used in construction. These sands have distinct qualities that make them appropriate for a variety of construction projects.
Like this post? Share it with your friends!
Suggested Read –
- What Is Stone | Types of Stone | Uses of Stones
- How Cement is Made | Cement Ingredients | History of Cement
- All About of Corrosion | What Is Corrosion | 9 Different Types of Corrosion
- What Is Hard Hat | Hard Hat Colour Definition | Different Hard Hat Colour Codes | Types of Safety Helmets | Classification of Hard Hats
- What Is Pier and Beam Foundation | Advantages & Disadvantages of Pier and Beam Foundations | Pier and Beam Foundation Design | How to Build a Post and Pier Foundation